Zeaxanthin and the Induction and Relaxation Kinetics of the Dissipation of Excess Excitation Energy in Leaves in 2% O(2), 0% CO(2).

نویسندگان

  • B Demmig-Adams
  • K Winter
  • A Krüger
  • F C Czygan
چکیده

The relationship between the carotenoid zeaxanthin, formed by violaxanthin de-epoxidation, and nonphotochemical fluorescence quenching (q(NP)) in the light was investigated in leaves of Glycine max during a transient from dark to light in 2% O(2), 0% CO(2) at 100 to 200 micromoles of photons per square meter per second. (a) Up to a q(NP) (which can vary between 0 and 1) of about 0.7, the zeaxanthin content of leaves was linearly correlated with q(NP) as well as with the rate constant for radiationless energy dissipation in the antenna chlorophyll (k(D)). Beyond this point, at very high degrees of fluorescence quenching, only k(D) was directly proportional to the zeaxanthin content. (b) The relationship between zeaxanthin and k(D) was quantitatively similar for the rapidly relaxing quenching induced in 2% O(2), 0% CO(2) at 200 micromoles of photons per square meter per second and for the sustained quenching induced by long-term exposure of Nerium oleander to drought in high light (B Demmig, K Winter, A Krüger, F-C Czygan [1988] Plant Physiol 87: 17-24). These findings suggest that the same dissipation process may be induced by very different treatments and that this particular dissipation process can have widely different relaxation kinetics. (c) A rapid induction of strong nonphotochemical fluorescence quenching within about 1 minute was observed exclusively in leaves which already contained a background level of zeaxanthin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Photoinhibition and zeaxanthin formation in intact leaves : a possible role of the xanthophyll cycle in the dissipation of excess light energy.

Comparative studies of chlorophyll a fluorescence, measured with a pulse amplitude modulated fluorometer, and of the pigment composition of leaves, suggest a specific role of zeaxanthin, a carotenoid formed in the xanthophyll cycle, in protecting the photosynthetic apparatus against the adverse effects of excessive light. This conclusion is based on the following findings: (a) exposure of leave...

متن کامل

Inhibition of zeaxanthin formation and of rapid changes in radiationless energy dissipation by dithiothreitol in spinach leaves and chloroplasts.

Dithiothreitol, which completely inhibits the de-epoxidation of violaxanthin to zeaxanthin, was used to obtain evidence for a causal relationship between zeaxanthin and the dissipation of excess excitation energy in the photochemical apparatus in Spinicia oleracea L. In both leaves and chloroplasts, inhibition of zeaxanthin formation by dithiothreitol was accompanied by inhibition of a componen...

متن کامل

Effects of aluminum on light energy utilization and photoprotective systems in citrus leaves.

BACKGROUND AND AIMS Under high photon flux, excitation energy may be in excess in aluminum (Al)-treated leaves, which use a smaller fraction of the absorbed light in electron transport due to decreased CO2 assimilation compared with normal leaves. The objectives of this study were to test the hypothesis that the antioxidant systems are up-regulated in Al-treated citrus leaves and correlate with...

متن کامل

Arabidopsis mutants define a central role for the xanthophyll cycle in the regulation of photosynthetic energy conversion.

A conserved regulatory mechanism protects plants against the potentially damaging effects of excessive light. Nearly all photosynthetic eukaryotes are able to dissipate excess absorbed light energy in a process that involves xanthophyll pigments. To dissect the role of xanthophylls in photoprotective energy dissipation in vivo, we isolated Arabidopsis xanthophyll cycle mutants by screening for ...

متن کامل

The Dynamics of Energy Dissipation and Xanthophyll Conversion in Arabidopsis Indicate an Indirect Photoprotective Role of Zeaxanthin in Slowly Inducible and Relaxing Components of Non-photochemical Quenching of Excitation Energy

The dynamics of non-photochemical quenching (NPQ) of chlorophyll fluorescence and the dynamics of xanthophyll conversion under different actinic light conditions were studied in intact leaves of Arabidopsis thaliana. NPQ induction was investigated during up to 180 min illumination at 450, 900, and 1,800 μmol photons m-2 s-1 (μE) and NPQ relaxation after 5, 30, 90, or 180 min of pre-illumination...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 90 3  شماره 

صفحات  -

تاریخ انتشار 1989